Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 882
Filtrar
1.
Sci Rep ; 12(1): 2651, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173232

RESUMO

Myelin sheath formation in the peripheral nervous system and the ensuing saltatory conduction rely on differentiated Schwann cells. We have previously shown that transition of Schwann cells from an immature into a differentiated state requires Brg1 that serves as the central energy generating subunit in two related SWI/SNF-type chromatin remodelers, the BAF and the PBAF complex. Here we used conditional deletion of Pbrm1 to selectively interfere with the PBAF complex in Schwann cells. Despite efficient loss of Pbrm1 early during lineage progression, we failed to detect any substantial alterations in the number, proliferation or survival of immature Schwann cells as well as in their rate and timing of terminal differentiation. As a consequence, postnatal myelin formation in peripheral nerves appeared normal. There were no inflammatory alterations in the nerve or other signs of a peripheral neuropathy. We conclude from our study that Pbrm1 and very likely the PBAF complex are dispensable for proper Schwann cell development and that Schwann cell defects previously observed upon Brg1 deletion are mostly attributable to altered or absent function of the BAF complex.


Assuntos
Diferenciação Celular/genética , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/fisiologia , Células de Schwann/fisiologia , Fatores de Transcrição/fisiologia , Animais , Linhagem da Célula/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , DNA Helicases/genética , Deleção de Genes , Camundongos , Bainha de Mielina/fisiologia , Proteínas Nucleares/genética , Nervos Periféricos/fisiologia , Fatores de Transcrição/genética
2.
Clin Transl Oncol ; 24(1): 84-92, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34181232

RESUMO

PURPOSE: To investigate the effect of microRNA-543 (miR-543) on the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of triple-negative breast cancer (TNBC) cells, and the associated mechanism. METHODS: Human breast cancer cells (MDA-MB-231, HCC1937, and MCF-7, ZR-75-1) and normal human breast epithelial cell line (MCF10A) were transfected with miR-543 mimics or inhibitor using lipofectamine 2000. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were used to determine the mRNA and protein expression levels of miR-543, actin-like protein 6A (ACTL6A), vimentin, Snail, and E-cadherin in breast cancer cells/tissue. Cell counting kit-8 (CCK-8), wound-healing, and Transwell assays were used to measure the effect of miR-543 on TNBC cell proliferation, invasion, and migration. Overall survival was determined using data from Gene Expression Omnibus (GEO) and Cancer Genome Atlas (TCGA) databases. Bioinformatics analysis and luciferase reporter gene assay were used to determine the regulatory effect of miR-543 on ACTL6A. RESULTS: The level of expression of miR-543 was significantly lower in breast cancer cells/tissue than in normal human breast epithelial cell/tissue (p < 0.05). MicroRNA-543 expression level was significantly reduced in TNBC cells/tissue, relative to the other breast cancer cells/normal breast tissue (p < 0.05). MicroRNA-543 significantly suppressed tumor growth and the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of TNBC cells, in mouse xenograft model (p < 0.05). CONCLUSIONS: miR-543 influences the biological behavior of TNBC cells by directly targeting ACTL6A gene. miR-543 could serve as a novel diagnostic and therapeutic target for TNBC.


Assuntos
Actinas/fisiologia , Movimento Celular , Proliferação de Células , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação para Baixo , Transição Epitelial-Mesenquimal , MicroRNAs/fisiologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Humanos , Camundongos , Invasividade Neoplásica , Células Tumorais Cultivadas
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810257

RESUMO

Kinetochores, a protein complex assembled on centromeres, mediate chromosome segregation. In most eukaryotes, centromeres are epigenetically specified by the histone H3 variant CENP-A. CENP-T, an inner kinetochore protein, serves as a platform for the assembly of the outer kinetochore Ndc80 complex during mitosis. How CENP-T is regulated through the cell cycle remains unclear. Ccp1 (counteracter of CENP-A loading protein 1) associates with centromeres during interphase but delocalizes from centromeres during mitosis. Here, we demonstrated that Ccp1 directly interacts with CENP-T. CENP-T is important for the association of Ccp1 with centromeres, whereas CENP-T centromeric localization depends on Mis16, a homolog of human RbAp48/46. We identified a Ccp1-interaction motif (CIM) at the N terminus of CENP-T, which is adjacent to the Ndc80 receptor motif. The CIM domain is required for Ccp1 centromeric localization, and the CIM domain-deleted mutant phenocopies ccp1Δ. The CIM domain can be phosphorylated by CDK1 (cyclin-dependent kinase 1). Phosphorylation of CIM weakens its interaction with Ccp1. Consistent with this, Ccp1 dissociates from centromeres through all stages of the cell cycle in the phosphomimetic mutant of the CIM domain, whereas in the phospho-null mutant of the domain, Ccp1 associates with centromeres during mitosis. We further show that the phospho-null mutant disrupts the positioning of the Ndc80 complex during mitosis, resulting in chromosome missegregation. This work suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis and uncovers a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína Quinase CDC2/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Histonas/metabolismo , Interfase , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Mitose , Fosforilação , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia
4.
Life Sci Alliance ; 4(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462321

RESUMO

STAG2, a component of the mitotically essential cohesin complex, is highly mutated in several different tumour types, including glioblastoma and bladder cancer. Whereas cohesin has roles in many cancer-related pathways, such as chromosome instability, DNA repair and gene expression, the complex nature of cohesin function has made it difficult to determine how STAG2 loss might either promote tumorigenesis or be leveraged therapeutically across divergent cancer types. Here, we have performed whole-genome CRISPR-Cas9 screens for STAG2-dependent genetic interactions in three distinct cellular backgrounds. Surprisingly, STAG1, the paralog of STAG2, was the only negative genetic interaction that was shared across all three backgrounds. We also uncovered a paralogous synthetic lethal mechanism behind a genetic interaction between STAG2 and the iron regulatory gene IREB2 Finally, investigation of an unusually strong context-dependent genetic interaction in HAP1 cells revealed factors that could be important for alleviating cohesin loading stress. Together, our results reveal new facets of STAG2 and cohesin function across a variety of genetic contexts.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Carcinogênese , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Humanos , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutações Sintéticas Letais
5.
Mol Biol Cell ; 32(21): ar15, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432494

RESUMO

Faithful chromosome segregation maintains chromosomal stability as errors in this process contribute to chromosomal instability (CIN), which has been observed in many diseases including cancer. Epigenetic regulation of kinetochore proteins such as Cse4 (CENP-A in humans) plays a critical role in high-fidelity chromosome segregation. Here we show that Cse4 is a substrate of evolutionarily conserved Cdc7 kinase, and that Cdc7-mediated phosphorylation of Cse4 prevents CIN. We determined that Cdc7 phosphorylates Cse4 in vitro and interacts with Cse4 in vivo in a cell cycle-dependent manner. Cdc7 is required for kinetochore integrity as reduced levels of CEN-associated Cse4, a faster exchange of Cse4 at the metaphase kinetochores, and defects in chromosome segregation, are observed in a cdc7-7 strain. Phosphorylation of Cse4 by Cdc7 is important for cell survival as constitutive association of a kinase-dead variant of Cdc7 (cdc7-kd) with Cse4 at the kinetochore leads to growth defects. Moreover, phospho-deficient mutations of Cse4 for consensus Cdc7 target sites contribute to CIN phenotype. In summary, our results have defined a role for Cdc7-mediated phosphorylation of Cse4 in faithful chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/fisiologia , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Cromatina/metabolismo , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Cromossomos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Epigênese Genética , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
6.
Nat Cell Biol ; 23(8): 905-914, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34354237

RESUMO

Heterochromatin, typically marked by histone H3 trimethylation at lysine 9 (H3K9me3) or lysine 27 (H3K27me3), represses different protein-coding genes in different cells, as well as repetitive elements. The basis for locus specificity is unclear. Previously, we identified 172 proteins that are embedded in sonication-resistant heterochromatin (srHC) harbouring H3K9me3. Here, we investigate in humans how 97 of the H3K9me3-srHC proteins repress heterochromatic genes. We reveal four groups of srHC proteins that each repress many common genes and repeat elements. Two groups repress H3K9me3-embedded genes with different extents of flanking srHC, one group is specific for srHC genes with H3K9me3 and H3K27me3, and one group is specific for genes with srHC as the primary feature. We find that the enhancer of rudimentary homologue (ERH) is conserved from Schizosaccharomyces pombe in repressing meiotic genes and, in humans, now represses other lineage-specific genes and repeat elements. The study greatly expands our understanding of H3K9me3-based gene repression in vertebrates.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Regulação da Expressão Gênica , Heterocromatina/fisiologia , Células Cultivadas , Sequência Conservada , Células Hep G2 , Histonas/metabolismo , Humanos
7.
Nucleic Acids Res ; 49(13): 7406-7423, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34214177

RESUMO

Heterochromatin binding protein HP1ß plays an important role in chromatin organization and cell differentiation, however the underlying mechanisms remain unclear. Here, we generated HP1ß-/- embryonic stem cells and observed reduced heterochromatin clustering and impaired differentiation. We found that during stem cell differentiation, HP1ß is phosphorylated at serine 89 by CK2, which creates a binding site for the pluripotency regulator KAP1. This phosphorylation dependent sequestration of KAP1 in heterochromatin compartments causes a downregulation of pluripotency factors and triggers pluripotency exit. Accordingly, HP1ß-/- and phospho-mutant cells exhibited impaired differentiation, while ubiquitination-deficient KAP1-/- cells had the opposite phenotype with enhanced differentiation. These results suggest that KAP1 regulates pluripotency via its ubiquitination activity. We propose that the formation of subnuclear membraneless heterochromatin compartments may serve as a dynamic reservoir to trap or release cellular factors. The sequestration of essential regulators defines a novel and active role of heterochromatin in gene regulation and represents a dynamic mode of remote control to regulate cellular processes like cell fate decisions.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/metabolismo , Heterocromatina/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Animais , Caseína Quinase II/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Cricetinae , Células-Tronco Embrionárias/citologia , Técnicas de Inativação de Genes , Humanos , Camundongos , Fosforilação , Serina/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/fisiologia
8.
Dev Cell ; 56(15): 2192-2206.e8, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331869

RESUMO

To generate haploid gametes, germ cells undergo two consecutive meiotic divisions requiring key changes to the cell division machinery. Here, we demonstrate that the protease separase rewires key cell division processes at the meiosis I/II transition by cleaving the meiosis-specific protein Meikin. Separase proteolysis does not inactivate Meikin but instead alters its function to create a distinct activity state. Full-length Meikin and the C-terminal Meikin separase cleavage product both localize to kinetochores, bind to Plk1 kinase, and promote Rec8 cleavage, but our results reveal distinct roles for these proteins in controlling meiosis. Mutations that prevent Meikin cleavage or that conditionally inactivate Meikin at anaphase I result in defective meiosis II chromosome alignment in mouse oocytes. Finally, as oocytes exit meiosis, C-Meikin is eliminated by APC/C-mediated degradation prior to the first mitotic division. Thus, multiple regulatory events irreversibly modulate Meikin activity during successive meiotic divisions to rewire the cell division machinery at two distinct transitions.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Meiose/fisiologia , Separase/metabolismo , Animais , Animais não Endogâmicos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Divisão do Núcleo Celular , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Feminino , Células HeLa , Humanos , Cinetocoros/metabolismo , Camundongos , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Separase/fisiologia
9.
PLoS Genet ; 17(6): e1009127, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138874

RESUMO

During meiosis I, ring-shaped cohesin complexes play important roles in aiding the proper segregation of homologous chromosomes. RAD21L is a meiosis-specific vertebrate cohesin that is required for spermatogenesis in mice but is dispensable for oogenesis in young animals. The role of this cohesin in other vertebrate models has not been explored. Here, we tested if the zebrafish homolog Rad21l1 is required for meiotic chromosome dynamics during spermatogenesis and oogenesis. We found that Rad21l1 localizes to unsynapsed chromosome axes. It is also found between the axes of the mature tripartite synaptonemal complex (SC) in both sexes. We knocked out rad21l1 and found that nearly all rad21l1-/- mutants develop as fertile males, suggesting that the mutation causes a defect in juvenile oogenesis, since insufficient oocyte production triggers female to male sex reversal in zebrafish. Sex reversal was partially suppressed by mutation of the checkpoint gene tp53, suggesting that the rad21l1 mutation activates Tp53-mediated apoptosis or arrest in females. This response, however, is not linked to a defect in repairing Spo11-induced double-strand breaks since deletion of spo11 does not suppress the sex reversal phenotype. Compared to tp53 single mutant controls, rad21l1-/- tp53-/- double mutant females produce poor quality eggs that often die or develop into malformed embryos. Overall, these results indicate that the absence of rad21l1-/- females is due to a checkpoint-mediated response and highlight a role for a meiotic-specific cohesin subunit in oogenesis but not spermatogenesis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Oogênese/fisiologia , Espermatogênese/fisiologia , Peixe-Zebra/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Pareamento Cromossômico , Feminino , Genes p53 , Gônadas/anatomia & histologia , Masculino , Mutação , Peixe-Zebra/fisiologia
10.
Nucleic Acids Res ; 49(9): 4944-4953, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877330

RESUMO

Transcription elongation can be affected by numerous types of obstacles, such as nucleosome, pausing sequences, DNA lesions and non-B-form DNA structures. Spt4/5 and Elf1 are conserved transcription elongation factors that promote RNA polymerase II (Pol II) bypass of nucleosome and pausing sequences. Importantly, genetic studies have shown that Spt4/5 plays essential roles in the transcription of expanded nucleotide repeat genes associated with inherited neurological diseases. Here, we investigate the function of Spt4/5 and Elf1 in the transcription elongation of CTG•CAG repeat using an in vitro reconstituted yeast transcription system. We found that Spt4/5 helps Pol II transcribe through the CTG•CAG tract duplex DNA, which is in good agreement with its canonical roles in stimulating transcription elongation. In sharp contrast, surprisingly, we revealed that Spt4/5 greatly inhibits Pol II transcriptional bypass of CTG and CAG slip-out structures. Furthermore, we demonstrated that transcription elongation factor Elf1 individually and cooperatively with Spt4/5 inhibits Pol II bypass of the slip-out structures. This study uncovers the important functional interplays between template DNA structures and the function of transcription elongation factors. This study also expands our understanding of the functions of Spt4/5 and Elf1 in transcriptional processing of trinucleotide repeat DNA.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , DNA de Forma B/química , DNA/química , Proteínas Nucleares/fisiologia , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Transcrição Gênica , Fatores de Elongação da Transcrição/fisiologia , Repetições de Trinucleotídeos
11.
Mol Biol Cell ; 32(8): 712-721, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33596090

RESUMO

Similar to other core biological processes, the vast majority of cell division components are essential for viability across human cell lines. However, recent genome-wide screens have identified a number of proteins that exhibit cell line-specific essentiality. Defining the behaviors of these proteins is critical to our understanding of complex biological processes. Here, we harness differential essentiality to reveal the contributions of the four-subunit centromere-localized CENP-O complex, whose precise function has been difficult to define. Our results support a model in which the CENP-O complex and BUB1 act in parallel pathways to recruit a threshold level of PLK1 to mitotic kinetochores, ensuring accurate chromosome segregation. We demonstrate that targeted changes to either pathway sensitizes cells to the loss of the other component, resulting in cell-state dependent requirements. This approach also highlights the advantage of comparing phenotypes across diverse cell lines to define critical functional contributions and behaviors that could be exploited for the targeted treatment of disease.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Centrômero/metabolismo , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Histonas/genética , Histonas/fisiologia , Humanos , Cinetocoros/fisiologia , Mitose/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia
12.
Plant Sci ; 303: 110766, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487351

RESUMO

UV RESISTANCE LOCUS 8 (UVR8) is a photoreceptor that regulates UV-B photomorphogenesis in plants. UV-B photon perception promotes UVR8 homodimer dissociation into monomer, which is reverted to homodimer post UV-B, forming a complete photocycle. UVR8 monomer interacts with CONSTITUTIVELY PHOTOMORPHOGENEIC 1 (COP1) to initiate UV-B signaling. The function and mechanism of Arabidopsis UVR8 (AtUVR8) are extensively investigated, however, little is known about UVR8 and its signaling mechanisms in other plant species. Tomato is a widely used model plant for horticulture research. In this report we tested whether an ortholog of AtUVR8 in Tomato (SIUVR8) can complement Arabidopsis uvr8 mutant and whether the above-mentioned key signaling mechanisms of UVR8 are conserved. Heterologous expressed SIUVR8 in an Arabidopsis uvr8 null mutant rescued the uvr8 mutant in the tested UV-B responses including hypocotyl elongation, UV-B target gene expression and anthocyanin accumulation, demonstrating that the SIUVR8 is a putative UV-B photoreceptor. Moreover, in response to UV-B, SIUVR8 forms a protein complex with Arabidopsis COP1 in plants, suggesting conserved signaling mechanism. SIUVR8 exhibits similar photocycle as AtUVR8 in plants, which highlights conserved photoreceptor activation and inactivation mechanisms.


Assuntos
Fotorreceptores de Plantas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Antocianinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Sequência Conservada/genética , Luz , Solanum lycopersicum/metabolismo , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia
13.
Stem Cell Rev Rep ; 17(4): 1280-1293, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33517544

RESUMO

The curiosity to understand the mechanisms regulating transcription in pluripotent cells resulted in identifying a unique transcription factor named Undifferentiated embryonic cell transcription factor 1 (UTF1). This proline-rich, nuclear protein is highly conserved among placental mammals with prominent expression observed in pluripotent, germ, and cancer cells. In pluripotent and germ cells, its role has been implicated primarily in proper cell differentiation, whereas in cancer, it shows tissue-specific function, either as an oncogene or a tumor suppressor gene. Furthermore, UTF1 is crucial for germ cell development, spermatogenesis, and maintaining male fertility in mice. In addition, recent studies have demonstrated the importance of UTF1 in the generation of high quality induced Pluripotent Stem Cells (iPSCs) and as an excellent biomarker to identify bona fide iPSCs. Functionally, UTF1 aids in establishing a favorable chromatin state in embryonic stem cells, reducing "transcriptional noise" and possibly functions similarly in re-establishing this state in differentiated cells upon their reprogramming to generate mature iPSCs. This review highlights the multifaceted roles of UTF1 and its implication in development, spermatogenesis, stem, and cancer cells.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Células-Tronco Embrionárias , Neoplasias , Transativadores , Animais , Feminino , Masculino , Camundongos , Neoplasias/genética , Proteínas Nucleares , Placenta , Gravidez , Transativadores/fisiologia , Fatores de Transcrição
14.
Mol Cell ; 80(3): 396-409.e6, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108759

RESUMO

Cytokine activation of cells induces gene networks involved in inflammation and immunity. Transient gene activation can have a lasting effect even in the absence of ongoing transcription, known as long-term transcriptional memory. Here we explore the nature of the establishment and maintenance of interferon γ (IFNγ)-induced priming of human cells. We find that, although ongoing transcription and local chromatin signatures are short-lived, the IFNγ-primed state stably propagates through at least 14 cell division cycles. Single-cell analysis reveals that memory is manifested by an increased probability of primed cells to engage in target gene expression, correlating with the strength of initial gene activation. Further, we find that strongly memorized genes tend to reside in genomic clusters and that long-term memory of these genes is locally restricted by cohesin. We define the duration, stochastic nature, and molecular mechanisms of IFNγ-induced transcriptional memory, relevant to understanding enhanced innate immune signaling.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Interferon gama/metabolismo , Ativação Transcricional/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Cromatina/genética , Proteínas Cromossômicas não Histona/fisiologia , Regulação da Expressão Gênica/imunologia , Células HeLa , Humanos , Inflamação , Interferon gama/fisiologia , Ligação Proteica/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética , Transcrição Gênica/genética , Ativação Transcricional/fisiologia
15.
Essays Biochem ; 64(2): 251-261, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32794572

RESUMO

While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Cinetocoros/metabolismo , Meiose , Animais , Centrômero/metabolismo , Drosophila , Células HeLa , Humanos , Camundongos
16.
Mol Cell ; 79(2): 234-250.e9, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32579944

RESUMO

Somatic cell nuclear transfer (SCNT) can reprogram a somatic nucleus to a totipotent state. However, the re-organization of 3D chromatin structure in this process remains poorly understood. Using low-input Hi-C, we revealed that, during SCNT, the transferred nucleus first enters a mitotic-like state (premature chromatin condensation). Unlike fertilized embryos, SCNT embryos show stronger topologically associating domains (TADs) at the 1-cell stage. TADs become weaker at the 2-cell stage, followed by gradual consolidation. Compartments A/B are markedly weak in 1-cell SCNT embryos and become increasingly strengthened afterward. By the 8-cell stage, somatic chromatin architecture is largely reset to embryonic patterns. Unexpectedly, we found cohesin represses minor zygotic genome activation (ZGA) genes (2-cell-specific genes) in pluripotent and differentiated cells, and pre-depleting cohesin in donor cells facilitates minor ZGA and SCNT. These data reveal multi-step reprogramming of 3D chromatin architecture during SCNT and support dual roles of cohesin in TAD formation and minor ZGA repression.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Técnicas de Transferência Nuclear , Zigoto/fisiologia , Animais , Linhagem Celular , Núcleo Celular , Montagem e Desmontagem da Cromatina , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Desenvolvimento Embrionário , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Mol Biol Cell ; 31(14): 1453-1473, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401635

RESUMO

The conserved kinetochore-associated NDC80 complex (composed of Hec1/Ndc80, Nuf2, Spc24, and Spc25) has well-documented roles in mitosis including 1) connecting mitotic chromosomes to spindle microtubules to establish force-transducing kinetochore-microtubule attachments and 2) regulating the binding strength between kinetochores and microtubules such that correct attachments are stabilized and erroneous attachments are released. Although the NDC80 complex plays a central role in forming and regulating attachments to microtubules, additional factors support these processes as well, including the spindle and kinetochore-associated (Ska) complex. Multiple lines of evidence suggest that Ska complexes strengthen attachments by increasing the ability of NDC80 complexes to bind microtubules, especially to depolymerizing microtubule plus ends, but how this is accomplished remains unclear. Using cell-based and in vitro assays, we demonstrate that the Hec1 tail domain is dispensable for Ska complex recruitment to kinetochores and for generation of kinetochore-microtubule attachments in human cells. We further demonstrate that Hec1 tail phosphorylation regulates kinetochore-microtubule attachment stability independently of the Ska complex. Finally, we map the location of the Ska complex in cells to a region near the coiled-coil domain of the NDC80 complex and demonstrate that this region is required for Ska complex recruitment to the NDC80 complex--microtubule interface.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Cinetocoros/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Proteínas do Citoesqueleto/fisiologia , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Mitose , Proteínas Nucleares/metabolismo , Fosforilação
18.
Essays Biochem ; 64(2): 313-324, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32347304

RESUMO

Chromosome alignment and biorientation is essential for mitotic progression and genomic stability. Most chromosomes align at the spindle equator in a motor-independent manner. However, a subset of polar kinetochores fail to bi-orient and require a microtubule motor-based transport mechanism to move to the cell equator. Centromere Protein E (CENP-E/KIF10) is a kinesin motor from the Kinesin-7 family, which localizes to unattached kinetochores during mitosis and utilizes plus-end directed microtubule motility to slide mono-oriented chromosomes to the spindle equator. Recent work has revealed how CENP-E cooperates with chromokinesins and dynein to mediate chromosome congression and highlighted its role at aligned chromosomes. Additionally, we have gained new mechanistic insights into the targeting and regulation of CENP-E motor activity at the kinetochore. Here, we will review the function of CENP-E in chromosome congression, the pathways that contribute to CENP-E loading at the kinetochore, and how CENP-E activity is regulated during mitosis.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo , Animais , Humanos
19.
Plant J ; 103(3): 1010-1024, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32324922

RESUMO

Histones are highly basic proteins involved in packaging DNA into chromatin, and histone modifications are fundamental in epigenetic regulation in eukaryotes. Among the numerous chromatin modifiers identified in Arabidopsis (Arabidopsis thaliana), MORF-RELATED GENE (MRG)1 and MRG2 have redundant functions in reading histone H3 lysine 36 trimethylation (H3K36me3). Here, we show that MRG2 binds histone chaperones belonging to the NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) family, including NAP1-RELATED PROTEIN (NRP)1 and NRP2. Characterization of the loss-of-function mutants mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 revealed that MRG1/MRG2 and NRP1/NRP2 regulate flowering time through fine-tuning transcription of floral genes by distinct molecular mechanisms. In particular, the physical interaction between NRP1/NRP2 and MRG1/MRG2 inhibited the binding of MRG1/MRG2 to the transcription factor CONSTANS (CO), leading to a transcriptional repression of FLOWERING LOCUS T (FT) through impeded H4K5 acetylation (H4K5ac) within the FT chromatin. By contrast, NRP1/NRP2 and MRG1/MRG2 act together, likely in a multiprotein complex manner, in promoting the transcription of FLOWERING LOCUS C (FLC) via an increase of both H4K5ac and H3K9ac in the FLC chromatin. Because the expression pattern of FLC represents the major category of differentially expressed genes identified by genome-wide RNA-sequencing analysis in the mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 mutants, it is reasonable to speculate that the NRP1/NRP2-MRG1/MRG2 complex may be involved in transcriptional activation of genes beyond FLC and flowering time control.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Flores/crescimento & desenvolvimento , Chaperonas de Histonas/fisiologia , Chaperonas Moleculares/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Flores/metabolismo , Flores/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Chaperonas de Histonas/metabolismo , Código das Histonas , Chaperonas Moleculares/metabolismo
20.
Neoplasma ; 67(4): 743-750, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32241158

RESUMO

Spindle and kinetochore associated complex subunit 2 (SKA2) is a part of the spindle and kinetochore associated (SKA) complex, which has been reported in various cancers, including the breast cancer, lung cancer, and glioma. However, its role remains unclear in hepatocellular carcinoma (HCC). Our study found that SKA2 mRNA levels and immunohistochemistry staining were significantly increased in HCC tissues compared with normal tissues. The role of SKA2 in cell proliferation and invasion was also determined. Overexpression of SKA2 significantly promoted cell proliferation and invasion, while knocking down of SKA2 expression inhibited the growth and invasion of HCC cells. In experiments investigating the underlying mechanism, overexpression of SKA2 may increase the expression levels of total ß-catenin, and knockdown of SKA2 may decrease the expression levels of total ß-catenin. Our studies thus suggest that SKA2 may promote proliferation and invasion of hepatocellular carcinoma cells by activating the ß-catenin signaling pathway, which can serve as a potential target in the diagnosis and/or treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Proteínas Cromossômicas não Histona , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Invasividade Neoplásica , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...